Subsurface fluxes of mass and energy at the accumulation zone of Lomonosovfonna ice cap, Svalbard
نویسندگان
چکیده
Marchenko, S. 2018. Subsurface fluxes of mass and energy at the accumulation zone of Lomonosovfonna ice cap, Svalbard. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1601. 52 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0158-7. Glaciers cover ca 10% of the Earth's land and are found in the high altitudes and latitudes. They are important components of environmental systems due to the multiple feedbacks linking them with the atmosphere, hydrosphere and periglacial landscapes. The cold sloping surfaces of glaciers change the patterns of atmospheric circulation at different scales and at the same time glaciers are largely controlled by climate. They are commonly used as climatic archives for reconstruction of the past environmental changes based on evidences from the areas affected by glaciation at the moment and in the past. Glaciers are the largest fresh-water reservoirs on our planet and runoff thereof significantly affects the global sea level and life in glaciated catchments. However, meltand rain-induced runoff from glaciers greatly depends on the subsurface conditions which thus need to be taken into account, particularly in a changing climate. This thesis focuses on the processes of subsurface mass and energy exchange in the accumulation zones of glaciers, which are largely driven by the climate at the surface. Results are largely based on empirical data from Lomonosovfonna ice cap, Svalbard, collected during field campaigns in 2012-2017. Observations of subsurface density and stratigraphy using shallow cores, video records from boreholes and radar surveys returned detailed descriptions of the snow and firn layering. The subsurface temperature data collected using multiple thermistor strings provided insights into several subsurface processes. The temperature values measured during three summer seasons were used to constrain the suggested parameterization of deep preferential water flow through snow and firn. The part of data recorded during the cold seasons was employed for an inverse modelling exercise resulting in optimized values of effective thermal conductivity of the subsurface profile. These results are then used to compute the subsurface water content by comparing the simulated and measured rates of freezing front propagation after the melt season in 2014. The field observations and quantitative estimates provide further empirical evidences of preferential water flow in snow/firn packs at glaciers. Results presented in the thesis call for implementation of description of the process in layered models simulating the subsurface fluxes of energy and mass at glaciers. This will result in a better understanding of glacier response to the past and future climatic changes and more accurate estimates of glacier runoff.
منابع مشابه
Positive mass balance during the late 20th century on Austfonna, Svalbard, revealed using satellite radar interferometry
Determining whether increasing temperature or precipitation will dominate the cryospheric response to climate change is key to forecasting future sea-level rise. The volume of ice contained in the ice caps and glaciers of the Arctic archipelago of Svalbard is small compared with that of the Greenland or Antarctic ice sheets, but is likely to be affected much more rapidly in the short term by cl...
متن کاملLomonosovfonna and Holtedahlfonna ice cores reveal east – west disparities of the Spitsbergen environment since AD 1700
An ice core extracted from Holtedahlfonna ice cap, western Spitsbergen, record spanning the period 1700–2005, was analyzed for major ions. The leading empirical orthogonal function (EOF) component is correlated with an index of summer melt (log([Na]/[Mg]) from 1850 and shows that almost 50% of the variance can be attributed to seasonal melting since the beginning of the industrial revolution. T...
متن کاملLomonosovfonna and Holtedahlfonna ice cores reveal east–west disparities of the Spitsbergen environment since
An ice core extracted from Holtedahlfonna ice cap, western Spitsbergen, record spanning the period 1700–2005, was analyzed for major ions. The leading empirical orthogonal function (EOF) component is correlated with an index of summer melt (log([Na]/[Mg]) from 1850 and shows that almost 50% of the variance can be attributed to seasonal melting since the beginning of the industrial revolution. T...
متن کاملTemporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard)
Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at th...
متن کاملFuture climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: a study with the regional climate model MAR forced by MIROC5
We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017